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Some motivation: Latent Variable Models in Biology
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Objectives

Perform inference and learning in latent variable models whose joint probability distribution ps(z,y) is non-differentiable.
6 set of static parameters
I latent (unobserved, hidden, or missing) variables
y (fixed) observed data

The statistical estimation tasks we focus are:

e Inference: estimating the latent variables given the observed data and the model parameters through the computation
of the posterior distribution ps(z|y)

e Learning: estimating the model parameters @ given the observed data through the computation and maximisation of
the marginal likelihood pg(y) (often intractable)
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MMLE = 6, € arg %%xpg(y) = arg max/pg(m, y)dz
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Some motivation: Latent Variable Models and EM algorithm

The MMLE task in LVMs is classically solved via the Expectation-Maximisation (EM) algorithm.
e E-step: given 6;_; we estimate the latent variables and compute Q(6,0r—1) = Epok,l(rly)[logp9(x> Y)]

e M-step: maximises the expectation of the E-step to provide a new estimate of §: 6, € arg max Q(6, 0x—1)
o

% Challenges

e The E and M steps are typically intractable and require approximations, which can degrade
performance.

e The inherently sequential nature of EM's iterative steps limits opportunities for parallelism, making it
computationally inefficient for large-scale problems.



Background: Langevin Algorithms

Langevin algorithms are used to draw samples from a probability distribution p(z) o e~V by
running the following SDE

dX; = —VU(X,)dt + v/2dB,

Under mild assumptions, this SDE has a strong solution and p(z) o e~V(*) is the unique invariant
distribution of the semigroup associated with the SDE.

Langevin algorithms can be reformulated as a minimisation problem in the space of probability
distributions miI})KL(',p(w))
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Background: Reformulating MMLE via Particle Systems

EM algorithm is equivalent to performing coordinate descent of a free energy functional [2],
whose minimum is the maximum likelihood estimate of the latent variable model and the optimal

posterior

Based on this observation, we can construct an extended stochastic dynamical system [1,2] which
can be run in the space R% y« R4, with the aim of jointly solving the problem of latent variable
sampling and parameters optimisation. In particular, IPLA [1]
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de)y = e > VU (0, XV )dt + \/NdB? v

=
dx: = —v, U@y, xX:Mdt + v2dBY,  i=1,...,N.

[1] Akyildiz et al. (2025) Interacting particle Langevin algorithm for maximum marginal likelihood estimation
[2] Kuntz et al. (2023) Particle algorithms for maximum likelihood training of latent variable models


https://scholar.google.com/citations?view_op=view_citation&hl=es&user=X1fsIjIAAAAJ&sortby=pubdate&citation_for_view=X1fsIjIAAAAJ:f2IySw72cVMC

Background: Proximal map and Moreau-Yosida approximation

The A\-proximity map or proximal operator function of U is defined forany A > 0 as

proxy(z) =argmin {U(z) + ||z — z||*/(2)\)} .
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The proximity operator = — prox;;(z) behaves similarly to a gradi-
ent mapping and moves points in the direction of the minimisers of
U. When U is differentiable, prox corresponds to the implicit
gradient step.

Define the A\-Moreau-Yosida approximation of U as
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Algorithms

Our goal is to extend interacting particle algorithms for the MMLE problem to cases where the distribution

po(z,y) o e U(e=) may be non-differentiable.

Our algorithms are based on discretisations of the following continuous-time interacting SDEs

B e
) do;" = ——ZWI/\ (0. %" )dt + 1/ S-dB;",
(2) X" = -V, UNO\ ;)dt + v2dB; Y.

Let (8 )i>0 be the -marginal of the solution to the SDEs and (6N),.cn be the 6 iterates of any algorithm
which is a discretisation of (1)-(2). Denote the §-marginal of the target measure of (1)-(2) by 77,

N
/ / MNO.z; )dlldl) d;L‘_\' :(/ e_L;«\(H..l-)dI> _
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Ty o concentrates around the maximiser of the MY approximation of the marginal likelihood as N — ~c.



Moreau-Yosida Interacting Particle Langevin Algorithm

Discretise (1)-(2) by considering U* = g; + g3, to derive MYIPLA:

g = (1 - —)9‘ + —Z ( Vo1 (BN, XN) + — 5 prox (9;,".X,";\')9> +
X5l = (1 3) X5 —AVarnOF, X5") 4 prox (O, XaM), + /27 €

To obtain an upper bound on the distance between the iterates of our algorithm and the MMLE 6,

ny

E[)|6Y — 0,|5/* = Wa(d5,, ﬁ(@;}'))g1112<'5§*.7r§j@)+nt2(w§_'9.z:(9‘)>+ut2(£(9 ).L(e,),)).

~"

-
concentration convergence dlscretlsatlon

The concentration term can be decomposed as W5(d; . V) < |6, — 0..,]| + W(0g_,. ™\ o), Where the first
term quantifies the distance between maximisers of py(y) and p; (y).



Proximal Interacting Particle Gradient Langevin Algorithm

Employ a splitting scheme to discretise (1)-(2) and obtain PIPGLA:
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We can split the errors as follows

E[||6Y — 6,|%)"/? = Wa(g,, L(OY ))<n)(o(, TH) + piz(wg’.z(ex))
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Example I: Bayesian Neural Network with Sparse Prior

Input layer

Apply a Bayesian 2-layer neural network
to classify MNIST digits.

We consider a Laplace prior on the
weights x which is a sparsity-inducing
prior.



Example I: Bayesian Neural Network with Sparse Prior
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The sparse representation
of our experiment has the
potential advantage of
producing models that are
smaller in terms of memory
usage when small weights
are zeroed out.

Figure: Histogram and density estimation of the
weights of a BNN for a randomly chosen particle from
the final cloud of particles.



Example Il: Image Deblurring with Total Variation Prior

@/’ Recover a high-quality image from a blurred and noisy observation y = Hz + ¢,
where [ is a circulant blurring matrix and ¢ ~ N(0, 6*I)

Inverse problem is ill-conditioned == incorporate prior knowledge.
We use a total variation prior 7V(z) | which promotes smoothness and preserves edges

The strength of this prior depends on a hyperparameter 6 that typically requires manual
:E tuning (expert knowledge). Instead of fixing this parameter manually, we estimate its

optimal value



Example Il
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: Image Deblurring with Total Variation Prior

The strength of this prior depends
on a hyperparameter @ that usually
requires manual tuning. Instead,
we estimate its optimal value.



Conclusions

Our algorithms present a novel approach for handling Bayesian models arising from
different types of non-differentiable regularisations, including Lasso, elastic net,
nuclear-norm and total variation norm.

We establish theoretical guarantees under strong convexity assumptions, however, in
practice, our methods perform well under more general conditions and demonstrate
robustness and stability across a range of regularisation parameter values.

See you at the
poster
- - presentation!
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