Proximal Interacting Particle Langevin Algorithms

Paula Cordero-Encinar, Francesca Crucinio and Deniz Akyildiz

IMPERIAL

uai2025

Some motivation: Latent Variable Models in Biology

 $\boldsymbol{\theta}:$ model parameters

x: Genes, latent variables

y: fenotype observed data

Objectives

Perform inference and learning in latent variable models whose joint probability distribution $p_{\theta}(x, y)$ is non-differentiable.

- θ set of static parameters
- x latent (unobserved, hidden, or missing) variables
- y (fixed) observed data

The statistical estimation tasks we focus are:

- Inference: estimating the latent variables given the observed data and the model parameters through the computation of the posterior distribution $p_{\theta}(x|y)$
- Learning: estimating the model parameters θ given the observed data through the computation and maximisation of the marginal likelihood $p_{\theta}(y)$ (often intractable)

$$ext{MMLE} = ar{ heta}_\star \in rg\max_{ heta \in \Theta} p_ heta(y) = rg\max_{ heta \in \Theta} \int p_ heta(x,y) \mathrm{d}x \, dx$$

Some motivation: Latent Variable Models and EM algorithm

The MMLE task in LVMs is classically solved via the Expectation-Maximisation (EM) algorithm.

- E-step: given θ_{k-1} we estimate the latent variables and compute $Q(\theta, \theta_{k-1}) = \mathbb{E}_{p_{\theta_{k-1}}(x|y)}[\log p_{\theta}(x, y)]$
- **M-step**: maximises the expectation of the E-step to provide a new estimate of θ : $\theta_k \in \arg \max_{\theta} Q(\theta, \theta_{k-1})$

Challenges

- The E and M steps are typically intractable and require approximations, which can degrade performance.
- The inherently sequential nature of EM's iterative steps limits opportunities for parallelism, making it computationally inefficient for large-scale problems.

Background: Langevin Algorithms

Langevin algorithms are used to draw samples from a probability distribution $p(x) \propto e^{-U(x)}$ by running the following SDE

$$\mathsf{d}\mathbf{X}_t = -\nabla U(\mathbf{X}_t)\mathsf{d}t + \sqrt{2}\mathsf{d}\mathbf{B}_t$$

Under mild assumptions, this SDE has a strong solution and $p(x) \propto e^{-U(x)}$ is the unique invariant distribution of the semigroup associated with the SDE.

Langevin algorithms can be reformulated as a minimisation problem in the space of probability distributions $\min_{\mathcal{P}_2(\mathbb{R}^d)} KL(\cdot, p(x))$

Background: Reformulating MMLE via Particle Systems

EM algorithm is equivalent to performing coordinate descent of a free energy functional [2], whose minimum is the maximum likelihood estimate of the latent variable model and the optimal posterior

Based on this observation, we can construct an extended stochastic dynamical system [1,2] which can be run in the space $\mathbb{R}^{d_{\theta}} \times \mathbb{R}^{d_x}$, with the aim of jointly solving the problem of latent variable sampling and parameters optimisation. In particular, IPLA [1]

$$\begin{split} \mathbf{d}\boldsymbol{\theta}_t^N &= -\frac{1}{N}\sum_{i=1}^N \nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta}_t^N, \mathbf{X}_t^{i,N}) \mathbf{d}t + \sqrt{\frac{2}{N}} \mathbf{d}\mathbf{B}_t^{0,N}, \\ \mathbf{d}\mathbf{X}_t^{i,N} &= -\nabla_x U(\boldsymbol{\theta}_t^N, \mathbf{X}_t^{i,N}) \mathbf{d}t + \sqrt{2} \mathbf{d}\mathbf{B}_t^{i,N}, \qquad i = 1, \dots, N. \end{split}$$

[1] Akyildiz et al. (2025) Interacting particle Langevin algorithm for maximum marginal likelihood estimation [2] Kuntz et al. (2023) Particle algorithms for maximum likelihood training of latent variable models

Background: Proximal map and Moreau-Yosida approximation

The λ -proximity map or proximal operator function of U is defined for any $\lambda > 0$ as

$$\operatorname{prox}_{U}^{\lambda}(x) \coloneqq \operatorname*{arg\,min}_{z \in \mathbb{R}^{d}} \left\{ U(z) + \|z - x\|^{2}/(2\lambda) \right\}.$$

The proximity operator $x \mapsto \operatorname{prox}_U^{\lambda}(x)$ behaves similarly to a gradient mapping and moves points in the direction of the minimisers of U. When U is differentiable, prox corresponds to the implicit gradient step.

Define the λ -Moreau-Yosida approximation of U as

$$U^{\lambda}(x) \coloneqq \min_{z \in \mathbb{R}^d} \left\{ U(z) + \|z - x\|^2 / (2\lambda) \right\}$$

Algorithms

Our goal is to extend interacting particle algorithms for the MMLE problem to cases where the distribution $p_{\theta}(x, y) \propto e^{-U(\theta, x)}$ may be non-differentiable.

Our algorithms are based on discretisations of the following continuous-time interacting SDEs

(1)
$$d\boldsymbol{\theta}_{t}^{N} = -\frac{1}{N} \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} U^{\lambda}(\boldsymbol{\theta}_{t}^{N}, \mathbf{X}_{t}^{i,N}) dt + \sqrt{\frac{2}{N}} d\mathbf{B}_{t}^{0,N},$$
$$d\mathbf{X}_{t}^{i,N} = -\nabla_{x} U^{\lambda}(\boldsymbol{\theta}_{t}^{N}, \mathbf{X}_{t}^{i,N}) dt + \sqrt{2} d\mathbf{B}_{t}^{i,N}.$$

Let $(\theta_t^N)_{t\geq 0}$ be the θ -marginal of the solution to the SDEs and $(\theta_n^N)_{n\in\mathbb{N}}$ be the θ iterates of any algorithm which is a discretisation of (1)–(2). Denote the θ -marginal of the target measure of (1)–(2) by $\pi_{\lambda\Theta}^N$,

$$\pi_{\lambda,\Theta}^{N}(\theta) \propto \int_{dx} \dots \int_{dx} e^{-\sum_{i=1}^{N} U^{\lambda}(\theta,x_{i})} \mathsf{d}x_{1} \mathsf{d}x_{2} \dots \mathsf{d}x_{N} = \left(\int_{dx} e^{-U^{\lambda}(\theta,x)} \mathsf{d}x\right)^{N}.$$

 $\pi^N_{\lambda,\Theta}$ concentrates around the maximiser of the MY approximation of the marginal likelihood as $N \to \infty$.

Moreau-Yosida Interacting Particle Langevin Algorithm

Discretise (1)–(2) by considering $U^{\lambda} = g_1 + g_2^{\lambda}$, to derive MYIPLA:

$$\begin{split} \theta_{n+1}^{N} &= \left(1 - \frac{\gamma}{\lambda}\right) \theta_{n}^{N} + \frac{\gamma}{N} \sum_{i=1}^{N} \left(-\nabla_{\theta} g_{1}(\theta_{n}^{N}, X_{n}^{i,N}) + \frac{1}{\lambda} \operatorname{prox}_{g_{2}}^{\lambda}(\theta_{n}^{N}, X_{n}^{i,N})_{\theta}\right) + \sqrt{\frac{2\gamma}{N}} \xi_{n+1}^{0,N}, \\ X_{n+1}^{i,N} &= \left(1 - \frac{\gamma}{\lambda}\right) X_{n}^{i,N} - \gamma \nabla_{x} g_{1}(\theta_{n}^{N}, X_{n}^{i,N}) + \frac{\gamma}{\lambda} \operatorname{prox}_{g_{2}}^{\lambda}(\theta_{n}^{N}, X_{n}^{i,N})_{x} + \sqrt{2\gamma} \xi_{n+1}^{i,N}. \end{split}$$

To obtain an upper bound on the distance between the iterates of our algorithm and the MMLE $ar{ heta}_{\star}$

$$\mathbb{E}[\|\theta_n^N - \bar{\theta}_\star\|^2]^{1/2} = W_2(\delta_{\bar{\theta}_\star}, \mathcal{L}(\theta_n^N)) \leq \underbrace{W_2(\delta_{\bar{\theta}_\star}, \pi_{\lambda, \Theta}^N)}_{\text{concentration}} + \underbrace{W_2(\pi_{\lambda, \Theta}^N, \mathcal{L}(\theta_{n\gamma}^N))}_{\text{convergence}} + \underbrace{W_2(\mathcal{L}(\theta_n^N), \mathcal{L}(\theta_{n\gamma}^N))}_{\text{discretisation}}.$$

The concentration term can be decomposed as $W_2(\delta_{\bar{\theta}_{\star}}, \pi^N_{\lambda,\Theta}) \leq \|\bar{\theta}_{\star} - \bar{\theta}_{\star,\lambda}\| + W_2(\delta_{\bar{\theta}_{\star,\lambda}}, \pi^N_{\lambda,\Theta})$, where the first term quantifies the distance between maximisers of $p_{\theta}(y)$ and $p_{\theta}^{\lambda}(y)$.

Proximal Interacting Particle Gradient Langevin Algorithm

Employ a splitting scheme to discretise (1)–(2) and obtain PIPGLA:

$$\begin{split} \theta_{n+1/2}^{N} &= \theta_{n}^{N} - \frac{\gamma}{N} \sum_{i=1}^{N} \nabla_{\theta} g_{1}(\theta_{n}^{N}, X_{n}^{i,N}) + \sqrt{\frac{2\gamma}{N}} \xi_{n+1}^{0,N}, \\ X_{n+1/2}^{i,N} &= X_{n}^{i,N} - \gamma \nabla_{x} g_{1}(\theta_{n}^{N}, X_{n}^{i,N}) + \sqrt{2\gamma} \ \xi_{n+1}^{i,N}, \\ \theta_{n+1}^{N} &= \frac{1}{N} \sum_{i=1}^{N} \operatorname{prox}_{g_{2}}^{\lambda} \left(\theta_{n+1/2}^{N}, X_{n+1/2}^{i,N} \right)_{\theta}, \\ X_{n+1}^{i,N} &= \operatorname{prox}_{g_{2}}^{\lambda} \left(\theta_{n+1/2}^{N}, X_{n+1/2}^{i,N} \right)_{x}. \end{split}$$

We can split the errors as follows

$$\mathbb{E}[\|\theta_n^N - \bar{\theta}_{\star}\|^2]^{1/2} = W_2(\delta_{\bar{\theta}_{\star}}, \mathcal{L}(\theta_n^N)) \leq \underbrace{W_2(\delta_{\bar{\theta}_{\star}}, \pi_{\Theta}^N)}_{\text{concentration}} + \underbrace{W_2(\pi_{\Theta}^N, \mathcal{L}(\theta_n^N))}_{\text{convergence + discretisation}}.$$

Example I: Bayesian Neural Network with Sparse Prior

Apply a Bayesian 2-layer neural network to classify MNIST digits.

6	b
	<i></i>
	~

We consider a Laplace prior on the weights **x** which is a sparsity-inducing prior.

Example I: Bayesian Neural Network with Sparse Prior

The sparse representation of our experiment has the potential advantage of producing models that are smaller in terms of memory usage when small weights are zeroed out.

Figure: Histogram and density estimation of the weights of a BNN for a randomly chosen particle from the final cloud of particles.

Example II: Image Deblurring with Total Variation Prior

Recover a high-quality image from a blurred and noisy observation $y = Hx + \varepsilon$, where H is a circulant blurring matrix and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

Inverse problem is ill-conditioned \implies incorporate prior knowledge. We use a total variation prior $e^{\theta TV(x)}$, which promotes smoothness and preserves edges

The strength of this prior depends on a hyperparameter θ that typically requires manual tuning (expert knowledge). Instead of fixing this parameter manually, we estimate its optimal value

Example II: Image Deblurring with Total Variation Prior

ыBlurred

(a) Original

The strength of this prior depends on a hyperparameter θ that usually requires manual tuning. **Instead**, we estimate its optimal value.

(c) MYIPLA

Conclusions

Our algorithms present a **novel approach for handling Bayesian models arising from different types of non-differentiable regularisations,** including Lasso, elastic net, nuclear-norm and total variation norm.

We establish theoretical guarantees under strong convexity assumptions, however, in practice, our methods perform well under more general conditions and demonstrate robustness and stability across a range of regularisation parameter values.

See you at the poster presentation!

HAPPY TO CHAT MORE AT THE POSTER PRESENTATION THIS AFTERNOON!

h

а

n k

V

0

u