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Some motivation: Latent Variable Models in Biology



Objectives
Perform inference and learning in latent variable models whose joint probability distribution               is non-differentiable.

          set of static parameters 

          latent (unobserved, hidden, or missing) variables

         (fixed) observed data

The statistical estimation tasks we focus are:

● Inference: estimating the latent variables given the observed data and the model parameters through the computation 
of the posterior distribution 

● Learning: estimating the model parameters    given the observed data through the computation and maximisation of 
the marginal likelihood           (often intractable)



Some motivation: Latent Variable Models and EM algorithm

The MMLE task in LVMs is classically solved via the Expectation-Maximisation (EM) algorithm. 

● E-step: given          we estimate the latent variables and compute

● M-step: maximises the expectation of the E-step to provide a new estimate of     :

● The E and M steps are typically intractable and require approximations, which can degrade 
performance.

● The inherently sequential nature of EM's iterative steps limits opportunities for parallelism, making it 
computationally inefficient for large-scale problems.

Challenges



Background: Langevin Algorithms

Langevin algorithms are used to draw samples from a probability distribution                      by 
running the following SDE

Langevin algorithms can be reformulated as a minimisation problem in the space of probability 
distributions



Background: Reformulating MMLE via Particle Systems

EM algorithm is equivalent to performing coordinate descent of a free energy functional [2], 
whose minimum is the maximum likelihood estimate of the latent variable model and the optimal 
posterior

Based on this observation, we can construct an extended stochastic dynamical system [1,2] which 
can be run in the space                , with the aim of jointly solving the problem of latent variable 
sampling and parameters optimisation. In particular, IPLA [1]

[1] Akyildiz et al. (2025) Interacting particle Langevin algorithm for maximum marginal likelihood estimation
[2] Kuntz et al. (2023) Particle algorithms for maximum likelihood training of latent variable models

https://scholar.google.com/citations?view_op=view_citation&hl=es&user=X1fsIjIAAAAJ&sortby=pubdate&citation_for_view=X1fsIjIAAAAJ:f2IySw72cVMC


Background: Proximal map and Moreau-Yosida approximation



Algorithms
Our goal is to extend interacting particle algorithms for the MMLE problem to cases where the distribution        
                              may be non-differentiable. 



Moreau-Yosida Interacting Particle Langevin Algorithm



Proximal Interacting Particle Gradient Langevin Algorithm



Example I: Bayesian Neural Network with Sparse Prior

Apply a Bayesian 2-layer neural network 
to classify MNIST digits. 

We consider a Laplace prior on the 
weights x which is a sparsity-inducing 
prior. 



Example I: Bayesian Neural Network with Sparse Prior

The sparse representation 
of our experiment has the 
potential advantage of 
producing models that are 
smaller in terms of memory 
usage when small weights 
are zeroed out.

Figure: Histogram and density estimation of the 
weights of a BNN for a randomly chosen particle from 
the final cloud of particles.



Example II: Image Deblurring with Total Variation Prior

Recover a high-quality image from a blurred and noisy observation                        ,
where      is a circulant blurring matrix and 

Inverse problem is ill-conditioned               incorporate prior knowledge. 
We use a total variation prior             , which promotes smoothness and preserves edges 

The strength of this prior depends on a hyperparameter      that typically requires manual 
tuning (expert knowledge). Instead of fixing this parameter manually, we estimate its 
optimal value



Example II: Image Deblurring with Total Variation Prior

The strength of this prior depends 
on a hyperparameter    that usually 
requires manual tuning. Instead, 
we estimate its optimal value.



Conclusions

Our algorithms present a novel approach for handling Bayesian models arising from 
different types of non-differentiable regularisations, including Lasso, elastic net, 
nuclear-norm and total variation norm.

We establish theoretical guarantees under strong convexity assumptions, however, in 
practice, our methods perform well under more general conditions and demonstrate 
robustness and stability across a range of regularisation parameter values.

See you at the 
poster 

presentation!
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HAPPY TO CHAT MORE AT THE POSTER 
PRESENTATION THIS AFTERNOON!


